DISCLAIMER

Although Honeywell International Inc. believes that the information contained herein is accurate and reliable, it is presented without guarantee or responsibility of any kind and does not constitute any representation or warranty of Honeywell International Inc., whether express or implied. A number of factors can affect the package performance, such as packaging design, film type, forming equipment and process conditions, and verification process. The list of recommendations for assessing the optimum package design and performance is not intended to be exhaustive, and customer or technical support provided by Honeywell is gratuitous in nature and offered without any warranties or representation. Nothing presented herein shall relieve the user from the responsibility of carrying out its own assessment, verification, or safety protocols and the user assumes all risks and liability for the use of this information (including, but not limited to, risks relating to results, patent infringement, regulatory compliance and health, safety and environment) related to the use of the products and suggestions contained herein.
PROTECTIVE BLISTER PACKAGING MATERIALS: ACLAR®

THOMAS DRIES

Amsterdam October 15, 2019
ROADMAP

What is Aclar?
Honeywell
How & where it is made
Key features

Moisture Barrier Concept
Aclar film range
Flat-film MVTR & barrier

Impact of Forming
Weight gain testing of blisters
Estimating formed cavity MVTR

Benefits & Value Prop.
Aluminum / Aluminum
High Barrier PVdC

Measurements vs MVTR Estimates
Weight gain testing results versus per cavity MVTR estimates

Q&A

HONEYWELL | GREAT BUSINESSES IN GROWING INDUSTRIES

<table>
<thead>
<tr>
<th>Segment</th>
<th>Sales</th>
<th>Our Business</th>
<th>Why We Win</th>
</tr>
</thead>
</table>
| Aerospace | ~$15.5B | Our products are used on virtually every commercial and defense aircraft platform and in 100M+ vehicles worldwide and include aircraft propulsion, cockpit systems, satellite communications, and vehicle turbochargers. | • Big wins on the right aircraft
• Largest installed base in the industry…and growing |
| Home and Building Technologies | ~$9.3B | Our products, software and technologies are in more than 150 million homes and 10 million buildings worldwide, helping customers control their comfort, security, and energy use. | • Comprehensive Connected Building offering improving performance and efficiency
• Broadening software and services opportunities |
| Performance Materials and Technologies | ~$10.7B | We develop advanced materials, process technologies, automation solutions, and industrial software that are revolutionizing industries around the world. | • Connected Plant enhancing customer operations
• Solstice® low-global-warming products reduce carbon emissions across many industries
• Aclar® moisture barrier films |
| Safety and Productivity Solutions | ~$6.3B | We improve enterprise performance and worker productivity and safety with our scanning and mobile computers, software, warehouse automation solutions, and personal protective equipment. | • New, innovative product launches in Productivity business
• Piloting Connected Worker with numerous customers |

Positive Macro Trends Underpin Our Businesses
Aclar® Film

Aclar (PCTFE) is a crystal clear, bio-chemically inert, chemical resistant, plasticizer and stabilizer free film. It provides the highest moisture barrier per thickness of any thermoformable films.

Poly-Chloro-Tri-Fluoro-Ethylene
ROADMAP

What is Aclar?
- Honeywell
- How & where it is made
- Key features

Moisture Barrier Concept
- Aclar film range
- Flat-film MVTR & barrier

Impact of Forming
- Weight gain testing of blisters
- Estimating formed cavity MVTR

Benefits & Value Prop.
- Aluminum / Aluminum
- High Barrier PVdC

Measurements vs MVTR Estimates
- Weight gain testing results versus per cavity MVTR estimates

Q&A
ACLAR® RANGE OF FILMS

• For moisture-sensitive drug products in all climatic zones
ACLAR® RANGE OF FILMS

- **Rx160 / .60 mil / 15 µ**
- **Rx 20e / .80 mil / 20 µ**
- **SupRx 900 / .90 mil / 23 µ**
- **Accel 1700 / 1.7 mil / 43 µ**
- **UltRx 2000 / 2 mil / 51 µ**
- **UltRx 3000 / 3 mil / 76 µ**
- **UltRx 4000 / 4 mil / 102 µ**
- **UltRx 6000 / 6 mil / 152 µ**

- **NEW!**

Portfolio designed to meeting wide range of moisture-barrier needs
MVTR (FLAT-FILM) @ ICH TESTING CONDITIONS

Source: Honeywell Aclar Datasheets

MVTR pattern at different ICH testing conditions

Source: Honeywell Aclar Datasheets
MOISTURE VAPOR TRANSMISSION RATE

Get started with flat Aclar film MVTR

Moisture Vapor Transmission Rate \(=\) \(\frac{\text{Permeability}}{\text{Gauge}}\)

Increasing gauge (barrier) by a factor of \(N\) reduces MVTR by a factor of \(\frac{1}{N}\)

At constant T & RH “Moisture Barrier” should be proportional to film gauge.
Flat-Film Moisture Vapor Barrier is predictable & proportional to film gauge
ROADMAP

What is Aclar?
Honeywell
How & where it is made
Key features

Moisture Barrier Concept
Aclar film range
Flat-film MVTR & barrier

Impact of Forming
Weight gain testing of blisters
Estimating formed cavity MVTR

Benefits & Value Prop.
Aluminum / Aluminum
High Barrier PVdC

Measurements vs MVTR Estimates
Weight gain testing results versus
Per cavity MVTR estimates

Q&A
COMMON ACLAR®- LAMINATES

Duplex
• Asymmetrical structure
 – Aclar moisture barrier
 – Web carrier such PVC, PP, PETG

Triplex (and Quadruplex)
• Symmetrical structure
 – Aclar moisture barrier
 – Two outer layers such PVC, PP, COC, PETG

• Asymmetrical structure
 – Aclar moisture barrier
 – Web carrier such PVC, PP, COC, PETG
 – Oxygen barrier layer such EVOH
 – Other functional layers such as PE
IMPACT OF FORMING

- Creation of greater surface \(S(\text{cavity}) \)
- Reduction of film thickness \(d(\text{cavity}) \)
- Reduction in barrier
- Thickness distribution of the barrier layer over entire surface area*

Options to assess MVTR (cavity)
1. Measurements (i.e. weight-gain)
2. Estimates via “Barrier Calculator”
3. (Finite-Element-Analysis FEA)*

* Refer presentation Daniel Stagnaro KP

Blister produced with Klöckner Pentaplast’s Pentapharm® Aclar PA200 /02 laminate

Formed cavity MVTR critical for drug product stability
WEIGHT-GAIN TESTING – SIZE #1 CAPSULE

Example of weight gain testing according to USP 671

40°C / 75%RH

Draw Ratio = 2.344
S(base) = 193.2 mm²
S (cavity) = 452.8 mm²
TYPICAL WEIGHT-GAIN TESTING PROTOCOL*

Size#1 capsule packed in Pentapharm® Aclar PA200 run with plug-assist

<table>
<thead>
<tr>
<th>Pack#</th>
<th>Weight Gain (g/package)</th>
<th>Day 6</th>
<th>Day 7</th>
<th>Day 13</th>
<th>Day 20</th>
<th>Day 27</th>
<th>Day 34</th>
<th>Day 37</th>
<th>Day 58</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00580</td>
<td>0.00650</td>
<td>0.01092</td>
<td>0.01574</td>
<td>0.02028</td>
<td>0.02518</td>
<td>0.02726</td>
<td>0.04195</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.00576</td>
<td>0.00643</td>
<td>0.01088</td>
<td>0.01564</td>
<td>0.02028</td>
<td>0.02507</td>
<td>0.02702</td>
<td>0.04169</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.00595</td>
<td>0.00674</td>
<td>0.01141</td>
<td>0.01645</td>
<td>0.02134</td>
<td>0.02640</td>
<td>0.02854</td>
<td>0.04400</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.00574</td>
<td>0.00656</td>
<td>0.01095</td>
<td>0.01603</td>
<td>0.02113</td>
<td>0.02605</td>
<td>0.02803</td>
<td>0.04317</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.00570</td>
<td>0.00631</td>
<td>0.01073</td>
<td>0.01568</td>
<td>0.02039</td>
<td>0.02522</td>
<td>0.02720</td>
<td>0.04196</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.00559</td>
<td>0.00638</td>
<td>0.01085</td>
<td>0.01567</td>
<td>0.02052</td>
<td>0.02548</td>
<td>0.02746</td>
<td>0.04231</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>0.00576</td>
<td>0.00649</td>
<td>0.01096</td>
<td>0.01587</td>
<td>0.02066</td>
<td>0.02557</td>
<td>0.02759</td>
<td>0.04251</td>
</tr>
<tr>
<td></td>
<td>Std. Dev.</td>
<td>0.00012</td>
<td>0.00015</td>
<td>0.00023</td>
<td>0.00032</td>
<td>0.00046</td>
<td>0.00054</td>
<td>0.00058</td>
<td>0.00089</td>
</tr>
<tr>
<td></td>
<td>Variation</td>
<td>2.1%</td>
<td>2.3%</td>
<td>2.1%</td>
<td>2.0%</td>
<td>2.2%</td>
<td>2.1%</td>
<td>2.1%</td>
<td>2.1%</td>
</tr>
</tbody>
</table>

Need to pay attention to:
- Variation between samples
- Aberrant data points
 - Saturated desiccant
 - Faulty samples

* In accordance with USP 671

A minimum of 6 blister cards recommended for weight-gain testing.
BARRIER CALCULATOR - EXAMPLE

Assumption: Aclar-thickness in cavity is constant and scales with draw ratio

\[
d(cavity) = \frac{S(base)}{S(cavity)} \times d(flatfilm)
\]

\[
MVTR(cavity) = S(base) \times MVTR(flatfilm) \times \text{Draw Ratio}^2
\]

- **Draw Ratio** = 2.344
- **S(base)** = 193.2 mm²
- **S (cavity)** = 452.8 mm²
- UltRx4000

MVTR of formed blister increases quadratically with surface area formed

Graph:
- **MVTR (cavity) @ 40°C / 75% RH**
- **Ultx4000 / PVC**
ROADMAP

What is Aclar?
Honeywell
How & where it is made
Key features

Benefits & Value Prop.
Aluminum / Aluminum
High Barrier PVdC

Impact of Forming
Weight gain testing of blisters
Estimating formed cavity MVTR

Moisture Barrier Concept
Aclar film range
Flat-film MVTR & barrier

Measurements vs MVTR Estimates
Weight gain testing results versus per cavity MVTR estimates

Q&A
Good correlation of weight gain testing results with estimates.

PER CAVITY MVTR - MEASURED VS CALCULATED

Size#1 capsule run with plug-assist and weight-gain-tested by Honeywell @ 40°C/75%RH

- **MVTR (mg/cavity*day) @ 40°C/75% RH**

<table>
<thead>
<tr>
<th></th>
<th>UltRx2000</th>
<th>UltRx4000</th>
<th>Accel5400</th>
<th>UltRx6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt.-gain Calc.</td>
<td>0.103</td>
<td>0.108</td>
<td>0.058</td>
<td>0.051</td>
</tr>
<tr>
<td>wt.-gain Calc.</td>
<td>0.108</td>
<td>0.108</td>
<td>0.051</td>
<td>0.051</td>
</tr>
<tr>
<td>wt.-gain Calc.</td>
<td>0.04</td>
<td>0.04</td>
<td>0.036</td>
<td>0.037</td>
</tr>
<tr>
<td>wt.-gain Calc.</td>
<td>0.032</td>
<td>0.032</td>
<td>0.032</td>
<td>0.032</td>
</tr>
</tbody>
</table>

Deviations measured vs estimated are in the range of -5% - +13.5%
Decent correlation of weight gain testing results with estimates
MOISTURE BARRIER OPTIMIZATION CASE-STUDY

Optimized Design

LOWER RISK for STABILITY-FAILURE

S (base) = 304.0 mm²
S (cavity) = 643.7 mm²
Draw ratio: 2.117

Customer standard tool

HIGH RISK for STABILITY-FAILURE

S (base) = 304.0 mm²
S (cavity) = 746.7 mm²
Draw ratio: 2.457

Optimized tool design resulted in 34.6% higher barrier (25.7% lower MVTR)

Need to be very mindful about cavity design - in particular for low dosage strengths & small tablet sizes which tend to be more vulnerable against moisture ingress
ROADMAP

What is Aclar?
How & where it is made
Key features

Moisture Barrier Concept
Aclar film range
Flat-film MVTR & barrier

Impact of Forming
Weight gain testing of blisters
Estimating formed cavity MVTR

Benefits & Value Prop.
Aluminum / Aluminum
High Barrier PVdC

Measurements vs MVTR Estimates
Weight gain testing results versus per cavity MVTR estimates

Q&A
Example: Size 0 capsule

PACK-SIZE COMPARISON ACLAR/PVC VS ALU-ALU

Blister Footprint: 55% less

Cavity Surface Area: 62% less

Up to 55% reduction in area & 62% in volume, respectively
BENEFITS THERMOFORMING VS ALU-ALU

- Patient discretion
- Ease of extraction
- Portability
- Longevity (Robustness)
- Less Medication Errors

➤ Higher Patient Adherence

Reduction of
- Pack Weight
- Pack Volume
- Shipping cost

Gains in
- Productivity
- Capacity
- Space

Reductions of
- Total Cost

ASAP-study to compare shelf-life Aclar/PVC vs Alu/Alu advised
PENTAPHARM ACLAR/PVC VS HB PVDC

HB PVdC Range *

351 µm
+13.6%

358 µm
+6.6%

394 µm
+7.9%

Pentapharm®/Aclar®**

Aclar UltRx4000

PA300 SO3

PA400 SO3

PA200 /02

Aclar UltR2000

PENTAPHARM ACLAR/PVC VS HB PVDC

HB PVdC up to 13.6% thicker than Pentapharm Aclar at comparable flat-film MVTR

** Pentapharm® is a registered trademark of Klöckner Pentaplast

* Marketed HB PVdC-Films
Significantly lower haze & no yellowing HB Aclar/PVC vs HB PVdC
BENEFITS ACLAR VS HB PVDC

Reduction
- Line stoppages
- Change-overs time
- Corrosion of parts

Gains
- User experience
- User confidence
- Marketability
- Packaging yield
- Process reliability
- Productivity (OEE)

Demonstrable and significant benefits Aclar vs HB PVdC
Physically stable and biochemically inert, non-ageing, non-yellowing

Fully backward integrated supply chain

Highest moisture barrier per unit thickness

Predictible barrier performance

Enabler for improved user experience

Aclar – a most-trusted brand
ACKNOWLEDGEMENTS

RON SEIBERT
WALTER GRUPP
GARY SKWAREK

Feel free to contact me using my e-mail: thomas.dries@honeywell.com
ROADMAP

What is Aclar?
How & where it is made
Key features

Moisture Barrier Concept
Aclar film range
Flat-film MVTR & barrier

Impact of Forming
Weight gain testing of blisters
Estimating formed cavity MVTR

Benefits & Value Prop.
Aluminum / Aluminum
High Barrier PVdC

Measurements vs MVTR Estimates
Weight gain testing results versus
per cavity MVTR estimates

Q&A
DISCLAIMER

Although Honeywell International Inc. believes that the information contained herein is accurate and reliable, it is presented without guarantee or responsibility of any kind and does not constitute any representation or warranty of Honeywell International Inc., whether express or implied. A number of factors can affect the package performance, such as packaging design, film type, forming equipment and process conditions, and verification process. The list of recommendations for assessing the optimum package design and performance is not intended to be exhaustive, and customer or technical support provided by Honeywell is gratuitous in nature and offered without any warranties or representation. Nothing presented herein shall relieve the user from the responsibility of carrying out its own assessment, verification, or safety protocols and the user assumes all risks and liability for the use of this information (including, but not limited to, risks relating to results, patent infringement, regulatory compliance and health, safety and environment) related to the use of the products and suggestions contained herein.