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This technical note describes the process of calculating error bars used in 

ASAPprime® (v6 and later). These error bars are the basis for the probability 

calculations. 

Error of the Fit 
When data are fit to a mathematical function, a linear or non-linear least 

squares regression analysis can be performed to minimize the distance 

between the best fit of the function and each of the values (the residual). 

In this process, the regression line (for linear functions) is the line that 

minimizes the sum of squared residuals. There are different ways to capture 

the error bars for that fit. In this Technical Note, the process used in 

ASAPprime® for taking the isoconversion times at each condition to 

determine the error bars for fitting the Arrhenius or modified Arrhenius 

equations is described. These error bars are then used to determine the 

corresponding probabilities based on that distribution. 

For simplicity, the situation of temperature only will be considered here, 

i.e., no relative humidity term, since the expansion to add the relative 

humidity term should be straightforward to understand. Also, for simplicity 

we will discuss the growth of degradant but recognize that loss of potency 

will be handled in an analogous manner. This means that we are fitting a 

linear function of ln [(degspec-deginit)/tiso) (ln kiso) vs. 1/T, where deginit is the 

amount of degradant at time zero, degspec is the specification limit, tiso is the 

isoconversion time (time to fail) and T is the stress temperature in Kelvin. 

Fitting the line provides two parameters: ln A (the intercept) and Ea/R (the 

slope). For simplicity, we can consider the case of just three conditions and 

with the deginit = 0 and degspec = 0.5% (Table 1 and Figure 1). 

Table 1. Example data set for error bar calculations. 

Temp. 
(°C) 1/T 

tiso 
(days) ln kiso 

ln kiso 
[best fit] 

Residual 
Squared 

50 0.003096 25 -3.912 -3.739 0.030 

60 0.003003 4 -2.079 -2.433 0.125 

70 0.002915 2 -1.386 -1.203 0.034 

Average 0.003005  -2.459  0.189 (sum) 

 

Figure 1. Plot of example data set. 

 
The fitted line represents the lowest sum of the square residuals for each 

of the three points. The mean square error (MSE) will equal the square root 

of the sum of the square residuals divided by the number of degrees of 

freedom. The square residuals are shown in Table 1. With three points and 

two parameters, there is only one degree of freedom. This means that the 

MSE equals 0.593/1 = 0.593.  

To calculate the error bars for the fit, we need to calculate the standard 

error (SE) in the ln kiso. This is determined using the following equation: 
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Here n is the number of conditions and the bars over a value indicate the 

average of that value. For the example in Table 1, SE = 0.437. This leads to 

the error bars for the isoconversion rates as shown in Figure 2. 

Figure 2. Error bars representing the error of the fit calculation for the 

example data from Table 1. 

 
From the error bars in the logarithm of the isoconversion rates, the 

degradation curve, with error bars, can be calculated at 25°C, as shown in 

Figure 3. Even though the fit to the data is relatively good (R2 = 0.94), there 

is still a wide range of possible degradant levels due to the small number of 

points used and the translation of logarithmic to normal rates. 
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Figure 3. Distribution of potential degradant levels as a function of time 
at 25°C based on the error of the fit for the example data set. The green 
and red lines represent plus/minus one standard deviation rates vs. the 
blue line (mean prediction). 

 

Error Propagation from Isoconversion Times 
Another situation can also occur, especially with only a small number of 

conditions. If the points lie directly on a line, there will be no error bar at all 

from the error of the fit. However, since each isoconversion time has an 

error bar, i.e., each point represents a part of a distribution, another type 

of error calculation becomes important to reflect the error bars of the 

isoconversion times themselves. 

 

The error bars for isoconversion times reflect the error bars from the data 

(i.e., amount of degradation at a single time point and condition) coupled 

with the amount of extrapolation each requires to hit the specification limit. 

We can envision three scenarios: (1) The error bars for the isoconversion 

times are much larger than the error bars for the fit; (2) the error bars for 

the fit are much larger than the isoconversion time errors; and (3) both 

errors are comparable. 

In calculating the error bars for degradation at lower temperatures 

propagating from the isoconversion time error bars at accelerated 

conditions, the fact that each isoconversion error bar is likely to be different 

makes a closed form solution problematic. Because of this, a Monte-Carlo 

simulation is carried out in ASAPprime® to determine this error bar. If we 

assume three conditions with isoconversion times corresponding to a 

perfect Arrhenius fit but now incorporate varying error bars at each 

condition (Table 2 and Figure 4), we can illustrate how this works. 

Table 2. Example data set used to illustrate propagated calculation of 

error bars.  

Temp. (°C) tiso (days) SD 

50 25 8 

60 4 2.5 

70 2 0.4 

 

Figure 4. Plot of example data set used to illustrate propagated 

calculation of error bars. 

 
As can be seen, the errors of the points are much larger than any error from 

the fit itself. We can generate a random distribution of isoconversion times 

for each temperature with the indicated average and standard deviation. 

We can use a total of 50 simulations as illustrated in Table 3 (ASAPprime® 

defaults to 2500 simulations). 

Table 3. Monte-Carlo simulation for example data from Table 2. 

# 50°C 60°C 70°C 

1 20.8 3.4 1.8 

2 32.9 0.3 2.6 

3 22.7 6.4 2.5 

4 7.5 8.0 1.9 

5 19.6 7.1 2.1 

6 32.2 4.6 2.1 

7 24.4 6.1 2.1 

8 35.0 3.6 2.5 

9 18.9 1.2 1.4 

10 18.2 4.6 1.9 

11 27.5 7.1 2.1 

12 21.1 6.1 1.7 

13 23.8 3.8 1.9 

14 22.8 7.5 2.4 

15 13.8 1.7 1.6 

16 22.9 0.7 2.1 

17 29.1 8.5 2.3 

18 19.8 6.1 2.2 

19 15.9 5.6 2.3 

20 23.4 4.3 2.2 

21 32.9 5.7 1.8 

22 24.1 3.9 2.1 

23 18.3 8.2 2.4 

24 26.6 3.1 2.1 

25 32.4 8.3 2.5 

26 18.2 4.5 2.3 

27 16.7 2.7 2.5 

28 47.7 5.7 1.3 

29 31.0 1.9 2.1 

30 24.1 5.0 2.4 
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31 24.5 0.9 1.8 

32 19.0 5.3 1.7 

33 16.3 2.1 2.2 

34 16.5 0.7 2.4 

35 46.0 1.4 1.9 

36 43.1 3.8 2.5 

37 16.5 5.3 2.0 

38 30.2 4.3 2.0 

39 25.9 8.6 1.8 

40 29.2 6.3 2.0 

41 34.2 5.1 1.9 

42 34.9 1.8 1.8 

43 20.9 0.8 1.6 

44 24.5 7.1 2.7 

45 26.0 1.2 1.8 

46 33.0 3.7 1.7 

47 21.8 5.2 2.6 

48 34.7 4.2 2.2 

49 34.1 3.0 1.6 

50 23.6 1.0 1.6 

Avg. 25.6 4.4 2.1 

SD 8.1 2.4 0.3 

 

The 50 simulations have averages and standard deviations that are close to 

the targets from Table 2 and are expected to get even closer with greater 

numbers of simulations. For each of the 50 simulations, the isoconversion 

times can be fit to the Arrhenius equation, and the resulting parameters for 

ln A and Ea provide a distribution of values which can be approximated as a 

normal distribution. The results are shown in Table 4. 

Table 4. Results of fifty-iteration Monte-Carlo simulation for data from 

Table 3. 

 Monte-Carlo 
Mean 

Monte-Carlo 
Standard 
Deviation 

Regression Line 
Mean 

ln A 39.1 6.3 40.5 

Ea (kcal/mol) 27.4 4.2 27.9 

As can be seen, the regression means and Monte-Carlo means are not quite 

the same because of the limited number of simulations used in this 

example. In ASAPprime®, the regression mean is used to center the 

distribution with the standard deviations calculated from the Monte-Carlo 

simulation. The confidence bands can be seen in Figure 5 and can be 

compared to those in Figure 2 based on the error of the fit. 

 

 

 

 

Figure 5. Confidence bands for example data set based on propagating the 

error bars for the isoconversion rates using a Monte-Carlo calculation. 

 
Using these confidence bands, the standard deviation for the isoconversion 

rates at 25°C can be used to generate the projected degradation error bars 

shown in Figure 6. 

Figure 6. Distribution of potential degradant levels as a function of time 

at 25°C based on the Monte-Carlo propagated error bars for the data set. 

The green and red lines represent plus/minus one standard deviation rates 

from the blue line (mean prediction). 

 

Combining Errors 
In a sense, one would expect that if a fitting model (in this case an Arrhenius 

fit) is correct, the error bars for that model should be encompassed 

naturally within the error bars for the points used. In other words, if the fit 

to the model with its error bars does not encompass the points with their 

error bars, one would have to consider that the model is not correct for that 

data set or that the error bars used are too narrow. This was the assumption 

implicit with ASAPprime® versions earlier than v6. However, a bad fit to the 

model could easily result in a tight error bar if the isoconversion errors are 

small, giving many ASAPprime® users confident values that were not 

accurate. For example, if one condition showed a discontinuity due to 

melting, the data for each condition could be tight, yet the overall model fit 

would be poor. Removing the point would result in a more accurate model 

but not necessarily a smaller error bar. To remedy this situation, we 

combine both the error of the fit and the isoconversion error propagation 
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into a new, effective error bar that takes both types of error bars into 

account. This is done by using the following calculation: 

𝑆𝐷𝑡𝑜𝑡𝑎𝑙 = √𝑆𝐷𝑓𝑖𝑡
2 + 𝑆𝐷𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑑

2  

In the present example, the combination of error bars produces the 

behavior shown in Figure 7. At 25°C, this corresponds to the degradant 

growth curve shown in Figure 8. As can be seen, the Monte-Carlo 

propagated error is dominant in this case; however, the additional error 

due to the goodness of fit is noticeable in the error bars. For example, at 

three years, the one standard deviation higher than the mean predicted 

value is 1.05% using just the error of the fit, 1.56% using just the propagated 

error, and 1.71% using the square root of the sum of the square errors. 

Figure 7 Confidence bands for example data set based on the square 

root of the sum of the square errors from the error of the fit and the 

propagated error bars from the isoconversion rates. 

Figure 8 Distribution of potential degradant levels as a function of time at 

25°C based on the square root of the sum of the square errors from the 

error of the fit and the Monte-Carlo propagated error bars for the data 

set. The green and red lines represent plus/minus one standard deviation 

rates from the blue line (mean prediction). 

 

 

 

Summary 
Error bar calculations need to reflect the uncertainty in modeling 

predictions. For ASAPprime®, the two major modeling errors are the error 

of the fit from the isoconversion rates (i.e., how well the data fit the model) 

and the error bar propagation from the isoconversion errors. The latter 

term reflects a combination of the experimental errors and the degree of 

extrapolation used to estimate the isoconversion rate at each condition. 

The software combines the two error sources using the square root of the 

sum of the squared errors. The overall error bars are then used to 

determine the probability of passing. The combination results in a more 

conservative estimate of shelf-life compared to using only the propagated 

error that was used in earlier versions of ASAPprime®. 
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