Accelerated Stability of Peptides

Alisa K. Waterman, Ph.D.

FreeThink Technologies, Inc.

Considerations for Stability of Small Molecule vs. Proteins

Small Molecules

- Subject to chemical modifications such as oxidation, deamination, hydrolysis
- Chemical modifications generally lead to loss of potency
- Only concerned with primary structure
- Often shelf-life limited by formation of low levels of degradants
- Stability indicating analytical method feasible

Proteins

- Subject to chemical modifications such as oxidation, deamination, hydrolysis
- Chemical modifications may or may not impact activity
- Impact on 1°, 2°, 3° and 4° structure must be considered
- Small changes in structure can have a large impact on activity and aggregation state
- Requirement for a panel of assays for determination of a stability indicating profile

Considerations for Stability of Small Molecule vs. Proteins

Small Molecules

 Follow Arrhenius behavior in solution and modified Arrhenius behavior in solid state

Proteins

 Undergo multiple reversible and irreversible steps making Arrhenius behavior more difficult to detect even in solution

Can the humidity modified Arrhenius equation be utilized to effectively model protein stability?

- Initial approach evaluate peptides
 - Chemical changes more likely to impact stability
 - Less likely to have complex higher order structure
 - Can track using a single analytical method (HPLC)

Can ASAP be Used to Model Shelf-life of Biologics?

Goal: Determine the applicability of the Accelerated Stability

Assessment Program (ASAP) to rapidly model the shelf-life of a

peptide

- Samples are incubated at elevated temperatures and RHs
- Times to specification limits (isoconversion times) are determined
- Data are fit to the humidity modified Arrhenius equation

Bacitracin

- Bacitracin is a mixture of related cyclic peptides produced by Bacillus licheniformis and Bacillus subtilis
 - Inhibits the incorporation of peptidoglycan building blocks into the cell walls of gram positive bacteria
 - In broad use as a topical anti-bacterial agent
- Bacitracin A is a major component of bacitracin
 - Binding of a divalent cation such as zinc required for potent antibiotic activity
 - In metal-free form, inhibits bacterial subtilisin-type proteases

Bacitracin

- Bacitracin F is a significant degradation product
 - Formed through oxidative deamination of the amino-thiazoline ring
 - Lacks antibiotic activity

Design of ASAP Study

- ASAP study performed comparing stability of solid bacitracin and bacitracin zinc
 - Evaluated stability indicating parameters by HPLC including:
 - Loss of bacitracin A (potency) and
 - Growth of bacitracin F (purity)

ASAP temperature and relative humidity conditions

Bacitracin A Loss: Determination of Isoconversion Times

Bacitracin A Loss: ASAP Model Parameters

Peptide form	In A	E _a (kcal/mol)	В	R ²	Q²
Вс	38.6±5.9	25.7±4.0	0.031±0.009	0.98	0.96
BcZn	34.3±7.6	24.2±5.2	0.010±0.010	0.94	0.87

Mean predicted shelf-life 25°C/60% RH (open) 0.5 years 10.4 years

Decreased collision frequency for BcZn: FreeThink^{Zn complex-less} mobility?

Technologies

BcZn has lower sensitivity to moisture

BcZn is significantly more stable than Bc

Bacitracin A Loss: Good Fit to Long Term Data

Growth of Bacitracin F: Determination of Isoconversion Times

Growth of bacitracin F from bacitracin Zn followed diffusion kinetics

Growth of Bacitracin F: ASAP Model Parameters

Peptide form	In A	E _a (kcal/mol)	В	R ²	Q²
Вс	44.6±4.9	29.2±3.3	0.021±0.007	0.95	0.83
BcZn	45.8±2.2	32.0±1.5	0.008±0.003	0.98	0.96

Mean predicted shelf-life 25°C/60% RH (open)

1.0 month

6.6 years

Increased activation energy for BcZn

BcZn has lower sensitivity to moisture

BcZn is significantly more stable than Bc

Growth of Bacitracin F: Good Fit to Long Term Data

Summary

- The Accelerated Stability Assessment Program (ASAP) was successfully applied to a peptide for the first time
- Bacitracin and its zinc complex were exposed to a range of temperatures and humidities for up to 21 days and both loss of bacitracin A and formation of bacitracin F were analyzed by HPLC
- Model fitting to the humidity-corrected Arrhenius equation was good
- Bacitracin zinc was predicted to be significantly more stable than bacitracin
- Model predictions matched long term data validating ASAP for the determination of long term stability of a peptide
- ASAP approach could be used to greatly accelerate the drug development of peptides and potentially other biologics

Acknowledgements

- Robin Waterman
- Jennifer Lewis
- Nick Sinchuk
- Teslin Botoy
- Mike Grabowski
- Ken Waterman

