Accelerated Stability Modeling of Gelatin Capsule Disintegration Time

Samuel Applegate¹², Jana O'Donnell¹, Kenneth C. Waterman¹, and Patrick Kelleher¹

¹FreeThink Technologies, Inc. ²Wesleyan University

Introduction

Gelatin capsule drug product shelf life can be limited by crosslinking, resulting in slower disintegration/dissolution. The literature suggests this is related to excipient aldehydes.

•ASAPprime® approach for accelerated aging:

- Time-to-fail specification (isoconversion)
- Moisture-modified Arrhenius equation:

 $ln(k) = ln(A) - E_a/(RT) + B(RH)$

k = (change to specification limit)/(isoconversion time),

A = collision frequency, E_a = activation energy, R = gas constant,

T = temperature, B = humidity sensitivity factor,

RH = equilibrium relative humidity

Study Design

T (°C)	% RH (Saturated Salt)	Days (Repeats)	
Control		0 (3)	
50	42 (Potassium Carbonate)	7 (1); 20 (1); 27 (1); 38 (1)	
60	26 (Sodium Iodide)	7 (1); 20 (1); 37 (1)	
65	11 (Lithium Chloride)	9 (1); 16 (1); 22 (1); 37 (1)	
65	49 (Sodium Bromide)	2 (1); 6 (1); 15 (1); 20 (1)	
70	28 (Magnesium Chloride)	3 (1); 9 (1); 16 (1); 22 (1); 27 (1)	
80	11 (Lithium Chloride)	2 (1); 6 (1); 15 (1)	
90	10 (Lithium Chloride)	1 (1); 2 (1); 5 (1); 9 (1)	

Method

Disintegration Testing

 SOTAX DT2 unit: capsules moved in/out of water bath (37 ± 2°C)

 Disintegration time = moment capsule shell deforms + air/excipient visibly released

Screening of excipient-containing gelatin capsule disintegration times after aging

	Disintegration Time (s)		
Excipient	Initial	80°C/ 41% RH/12 d	
Empty	73	90	
Lactose (GranuLac [®] 200)	84	110	
MCC (Avicel [®] PH-102)	85	109	
PVP (Plasdone™ K-29/32)	120	151	
Pregelatinized Starch (Starch 1500®)	92	145	

• Quali-G[™] 00 gelatin capsules (n = 10), empty or with ~600 mg of Starch 1500[®] (selected as model), sealed in canning jars with saturated salt solutions

•Placed in ovens for different durations

Results

 Isoconversion times at all conditions used to generate stability model with ASAPprime[®]

Example data of empty capsule disintegration times after storage at $65^{\circ}C/11\%$ RH (left) and $80^{\circ}C/11\%$ RH (right)

ASAPprime® fitting of isoconversion times to moisture-modified Arrhenius equation showing overlapping behavior with and without starch

Fill	ln A	E _a (kcal/mol)	В	R ²
Empty	36.2 ± 8.4	24.9 ± 5.9	0.016 ± 0.018	0.91
Starch	41.0 ± 7.6	28.3 ± 5.4	0.034 ± 0.017	0.98

Residuals plots of isoconversion times, relative to temperature and RH, showing good fit to model

ASAPprime® predictions for disintegration time stability of starchfilled capsules

Conclusions

• Disintegration slowdown of gelatin capsules modeled effectively using ASAPprime®

• Excipient does not significantly impact capsule disintegration stability, implicating crosslinking is intrinsic to gelatin

Contact

sam.david.applegate@gmail.com jana.odonnell@freethinktech.com

