Predictive Accelerated Stability Modeling of Probiotics using ASAPprime®

Patrick J. Kelleher^{1*}, Alisa K. Waterman¹, Andrzej Benkowski², Amber Marty³, and Kenneth C. Waterman¹

¹FreeThink Technologies, Inc., ²Eurofins Microbiology Laboratories, Inc., and ³International Flavors & Fragrances, Inc.

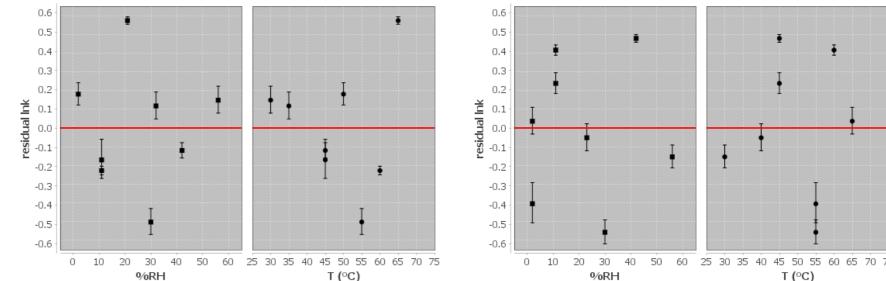
Study Goals

This study tests whether probiotic stability can be predictively modeled using the Accelerated Stability Assessment Program (ASAP*prime®*), and if formulated probiotic stability in packaging is predictable from pure probiotic powder stability models.

Principles of ASAP

ASAP enables rapid shelf life assessment from short (~3 weeks) stressing studies based on the following concepts:

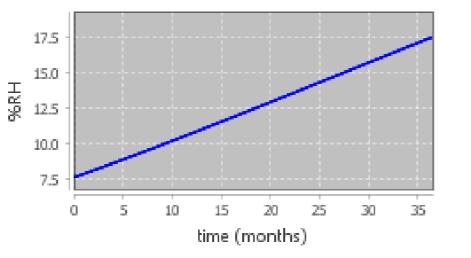
- 1. Time-to-fail specification (isoconversion times) rather than true rate constant
- 2. Moisture-modified Arrhenius equation:


$ln(k) = ln(A) - E_a/(RT) + B(RH)$

k = (initial value – specification limit)/(isoconversion time),
ln(A) = preexponential factor, E_a = activation energy, R = gas constant,
T = temperature in Kelvin, B = humidity sensitivity factor, and

Results

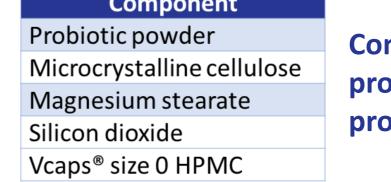
ASAPprime[®]-modeled Arrhenius parameters for loss of cell viability (loss of 2.5 log (CFU/g) from initial)


Strain	Specification limit log (CFU/g)	ln A	E _a (kcal/mol)	В	R ²	Q ²
L. acidophilus	9.0	38.5 ± 4.9	26.8 ± 3.2	0.066 ± 0.010	0.94	0.82
B. lactis	9.5	41.2 ± 7.1	28.1 ± 4.7	0.052 ± 0.014	0.88	0.72

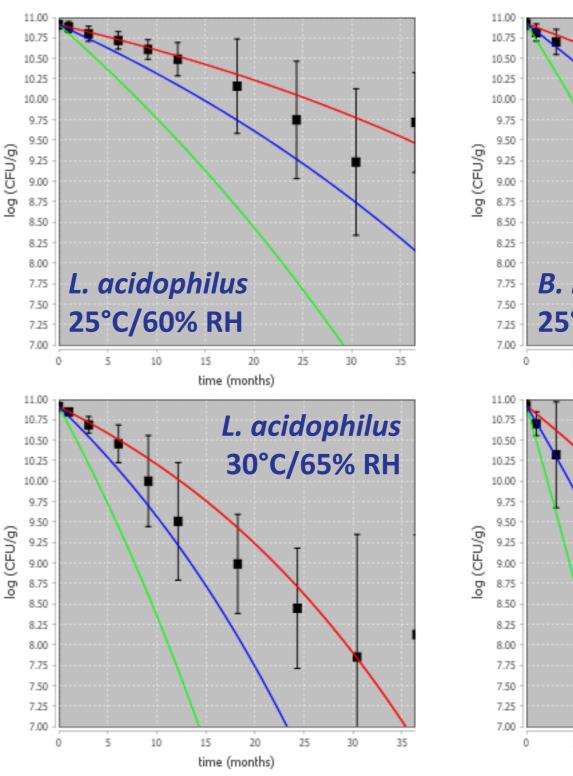
Residuals plots of fit to the Arrhenius model for loss of cell viability in *L. acidophilus* (left) and *B. lactis* (right) powder

- RH = equilibrium relative humidity
- 3. Calculation of RH inside packaging as a function of time using:
 - Moisture sorption isotherms of product and desiccants
 - Moisture permeability of package (MVTR)
 - Initial water activity of product
 - External storage conditions

Example: Internal RH for 60 capsules and 1 g of silica gel desiccant in a 100-cc HDPE bottle stored at 25°C/60% RH

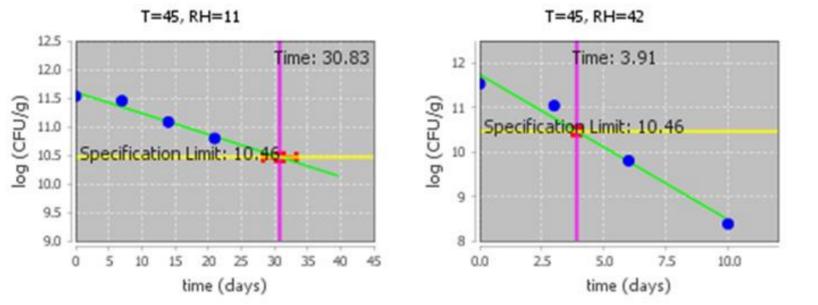

4. Determination of probability of achieving desired shelf life under longterm storage condition(s) in targeted packaging configuration(s)

Methods


• Powders of *Lactobacillus acidophilus* and *Bifidobacterium lactis* were stressed (outside of packaging) at a range of temperature and RH conditions for up to three weeks.

ASAP stress conditions for *L. acidophilus* powder

Temperature (°C)	% RH (Saturated Salt Solution)	Time in Days (Repeats)	
Control (2–8)	N/A	0 (5)	
30	56 (Sodium Bromide)	3 (1); 10 (2); 17 (1)	
35	32 (Magnesium Chloride)	14 (1); 21 (1)	
40	66 (Potassium Iodide)	1 (1); 2 (1)	
45	11 (Lithium Chloride)	7 (1); 14 (1); 21 (1)	
45	42 (Potassium Carbonate)	3 (2); 6 (1); 10 (1)	
50	2 (Cesium Fluoride)	11 (1); 15 (1); 21 (1)	
55	30 (Magnesium Chloride)	1 (1); 3 (1)	
60	11 (Lithium Chloride)	3 (1); 14 (1)	
65	21 (Potassium Fluoride)	1 (1); 2 (1)	
70	2 (Cesium Fluoride)	1 (1); 3 (1)	
Total		31 samples	



Long-term stability data (error bars $\pm 1\sigma$) for cell viability (log (CFU/g)) of capsule products packaged in 100-cc HDPE (HIS) bottles containing 60 capsules and 1 g of silica gel desiccant overlaid on loss predicted by ASAP*prime*[®]. Blue line: mean predicted behavior. Green and red lines: 90% confidence interval.

Conclusions

 Viability was quantified by cultural plating enumeration methods (CFU/g) and evaluated using ASAPprime[®] software.

Example isoconversion plots for cell viability in *L. acidophilus* powder

 Behavior of the formulated capsule product was calculated based on pure probiotic powder results by explicitly taking into account the moisture sorption behavior of the capsule shell and excipients.

- ASAPprime[®] predictive stability models based on three weeks of aging at a designed range of temperature and RH conditions (open) accurately predict the observed long-term stability of two bacterial strains.
- Models generated for the pure probiotic powder are applicable to formulated and packaged capsule products by explicitly calculating the inpackage RH as a function of time: excipients and capsule shells predominately affect moisture balance and do not directly impact the probiotic stability.
- Accelerated stability modeling of probiotic shelf life using ASAPprime[®] enables rapid determination of shelf life under different storage

conditions, packaging requirements, overage needs, and impact of shipping excursions.

Contact

patrick.kelleher@freethinktech.com

