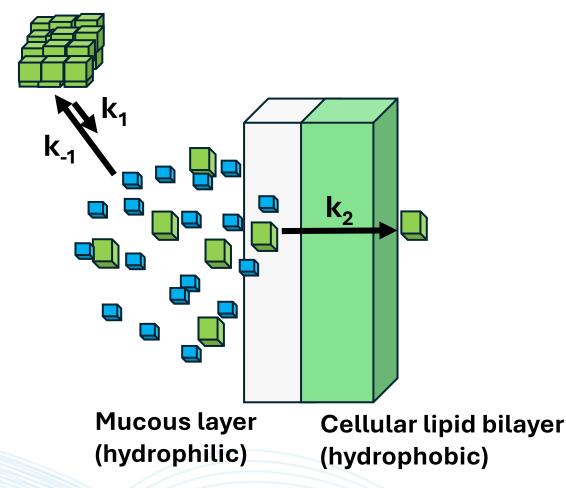
Solubilization Selection

April 2, 2024 Kenneth C. Waterman

Copyright 2024 FreeThink Technologies, Inc.


What You Will Learn

- The fundamental physical chemistry of drug solubility, its interplay with intestinal absorption, and the role of different mechanisms for solubilization
- The advantages of oil-based formulations including selfemulsifying dispersions
- When particle size reduction is the right answer
- When to use amorphous solid dispersions and whether to prepare them using a hot melt extrusion or spray drying

Intestinal Drug Absorption

Limiting Conditions

- When k₂ >> k₁ absorption rate proportional to dissolution rate (k₁)
- When k₁ >> k₂ absorption rate proportional to drug solubility (k₁ / k₂)

Is Solubilization Needed?

Maximum Absorbable Dose (MAD)

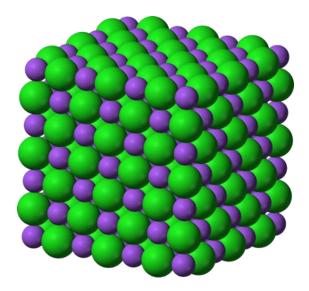
$$MAD = k_2 SVt$$
 $S = \frac{MAD}{k_2 Vt}$

- k_2 absorption rate (0.001 to 0.050 min⁻¹)
- S solubility (mg/mL), min value in pH 6.1-7.5
- V water volume of small intestine (250 mL)
- t residence time in small intestine (270 min)

Biopharmaceutics Classification System (BCS)

To be considered "high solubility" (BCS I or III):

$$solubility \geq \frac{dose[mg]}{250 \ [mL]}$$


Is Solubilization Needed?

Dose (mg)	Absorption Rate (min ⁻¹)	Minimum Solubility Needed (µg/mL)	BCS I or III Solubility Needed (µg/mL)
50	0.005	150	200
50	0.025	30	200
200	0.025	119	800

Physical Chemistry of Solubility

Representation of an ionic crystal

Drug Crystals

- Molecules interact strongly together (cooperatively)
 → enthalpy favors the lattice
 - Charge interactions (ionic)
 - Hydrogen bonds
 - Van der Waals interactions
- High degree of order (low entropy) → entropy favors loss of lattice structure (amorphization, dissolution)

Physical Chemistry of Solubility

Water

- Molecules interact together → enthalpy favors pure water
 - Hydrogen bonding strong
- Pure water has order → entropy favors impure water

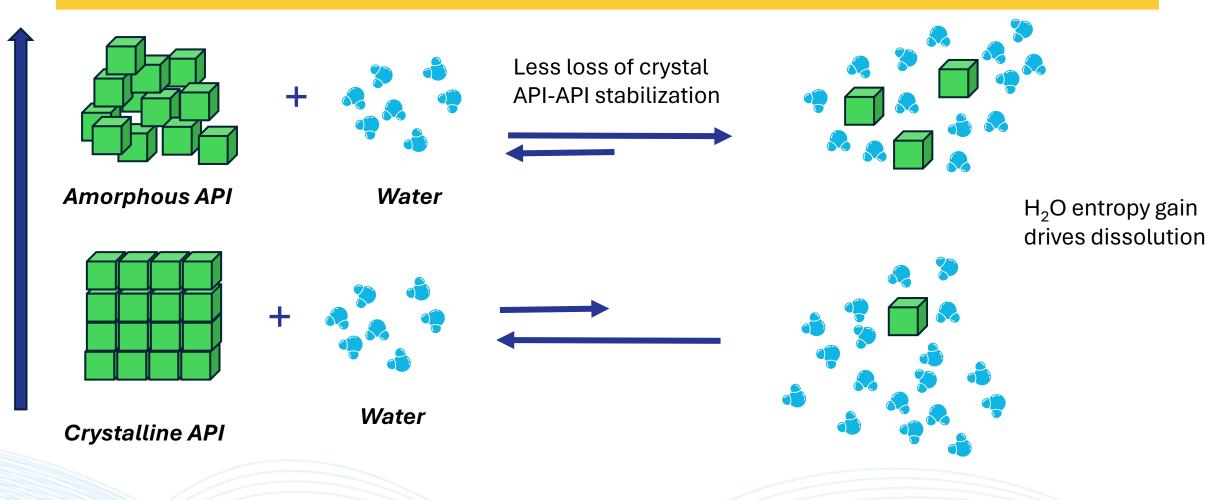
Physical Chemistry of Solubility

Low Solubility Root Causes

Hydrophobicity

 Drug-water interactions are poor (low H₂O-API enthalpy)

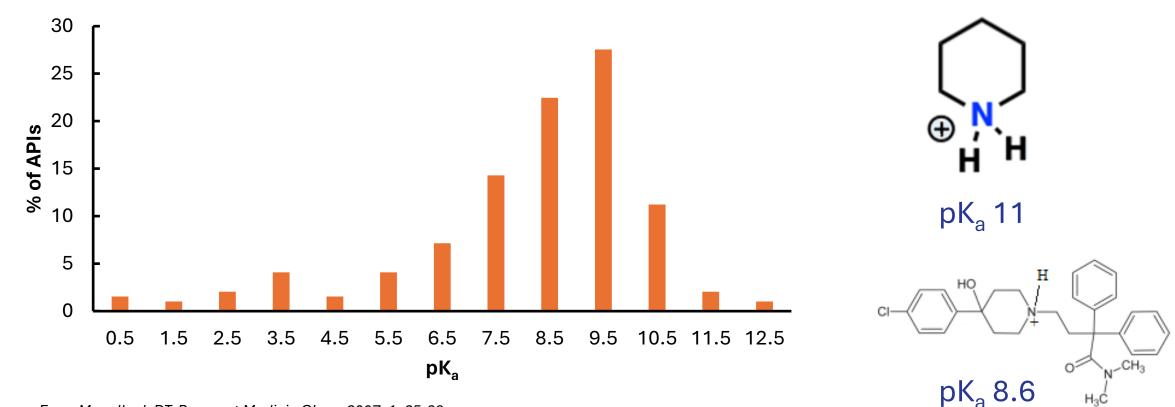
Strong Crystal Lattice


- Drug-drug interactions very good (high crystal lattice enthalpy)
- API has high melting point

Energetics of Dissolution

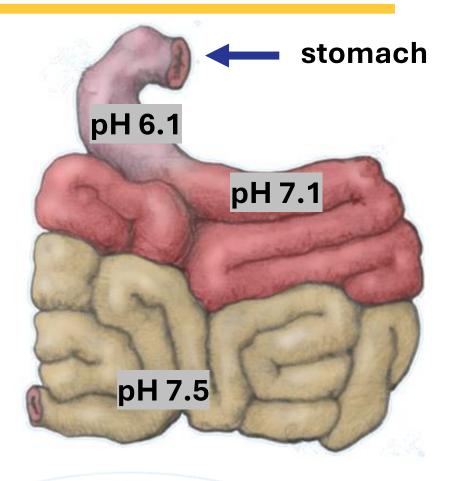
Improving Overall Absorption of Poorly Soluble Drugs

- Increase API dissolution rate [k₁] (fast intestinal absorption)
 - Salt form
 - Complexation
 - Particle size reduction
 - Drug dissolved in oil/surfactant
- Increase (supersaturated) API concentration [k₁/k₂]
 - Amorphous API
 - Precipitated in vivo
 - Amorphous solid (dispersion)


Increasing API Dissolution Rate: Salt Formation

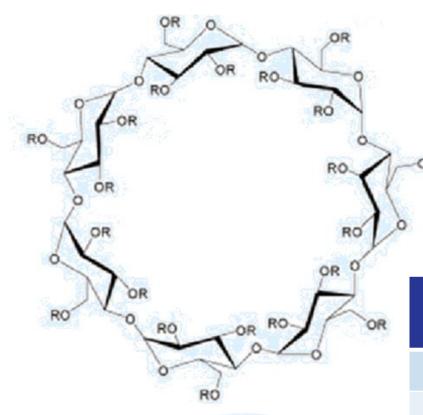
- APIs generally have higher solubility in salt form (ionized) compared to free form; however, only neutral APIs absorb through intestinal walls
- Dissolved salts of APIs can often rapidly replenish drug as it absorbs
- In some cases, dissolved basic drugs in the stomach can precipitate into amorphous free base in intestine (depending on pK_a) giving higher kinetic solubility

Increasing API Dissolution Rate: Salt Formation



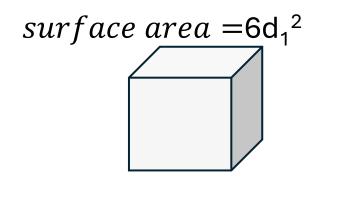
From Manallack DT, Perspect Medicin Chem 2007; 1: 25-38

Increasing API Dissolution Rate: Salt Formation



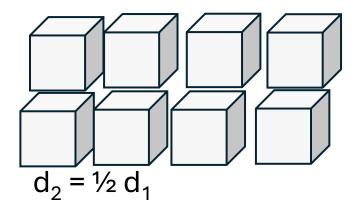
рК _а	% lonized @ pH 6.1	% lonized @ pH 7.5
6.5	71.5	9.1
9	99.8	96.9
11	99.9	99.9

Increasing API Dissolution Rate: Complexation


- Cyclodextrins can solubilize APIs that fit into the ring cavity (0.60-0.65 nm)
- Typically, only one API per cyclodextrin
- API needs to dissociate from complex to absorb
- Complexed API can replenish absorbed drug quickly unless binding constant is too high

Cyclodextrin	R	MW	API Maximum Dose (mg)
β	Н	1153	150
SBECD	(CH ₂) ₄ SO ₃ ⁻	2163	75

Increasing Water Dissolution Rate: Particle Size Reduction



Dissolution rate of crystal depends on surface area to volume ratio and the API concentration at the particle surface vs. saturation (Noyes/Whitney)

d₁

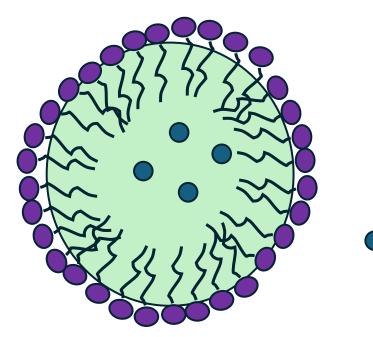
surface area = $8*[6*(d_1/2)^2]=12d_1^2$

Overall, dissolution rate <u>directly proportional</u> to particle diameter

Copyright 2024 FreeThink Technologies, Inc. www.freethinktech.com

Increasing API Dissolution Rate: Particle Size Reduction – Processing

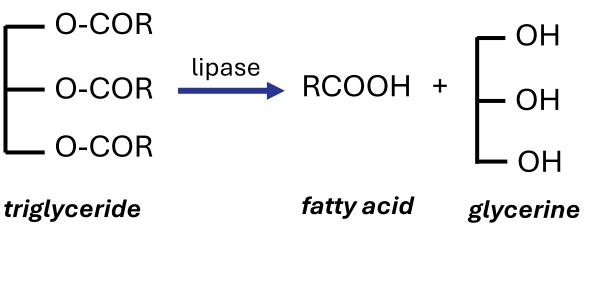
- Processes can be simple using well-established techniques
 - Milling
 - Ball milling: API particles plus beads (usually steel) are rotated in a drum generating shear
 - Hammer milling: API particles fed into fixed drum with rotating hammers
 - Jet milling: Very high-speed air shears API particles
 - Cryomilling: Using low temperature to make particles more brittle such that mechanical shear will shatter them
 - Crystal Engineering
 - Antisolvent addition to generate small crystals
 - Rapid expansion of supercritical solution (typically CO₂)
- Extremely small crystals (<10 nm): surface molecules have higher energy (greater solubility), but impractical for solid dosage forms due to flow, agglomeration issues


Increasing API Dissolution Rate: Particle Size Reduction – Challenges

- While particle size reduction may increase solubility, there are some challenges with this approach
 - Stability
 - Milling or rapid crystallization can result in amorphous API which is much less stable chemically (drug degradation) and physically (recrystallization)
 - Diminishing returns
 - Need to remain dissolution limited: may quickly saturate solution near API particles when solubility is low
 - Manufacturability
 - Smaller particles generally flow more poorly
 - Smaller particles can agglomerate
 - Particle size distribution may be difficult to keep consistent batch to batch

Increasing API Dissolution Rate: Emulsions

- Self-Emulsifying Drug Delivery System (SEDDS) or Self Micro-Emulsifying Drug Delivery System (SMEDDS)
 - API dissolved in oil + surfactant + solvent (can be solid dosage form)
 - When exposed to water in GI system, forms micro- or nano-emulsion
 - High surface area: equilibration between drug in micelle and bulk water phases rapid



Increasing API Kinetic Solubility: Lipid Digestion

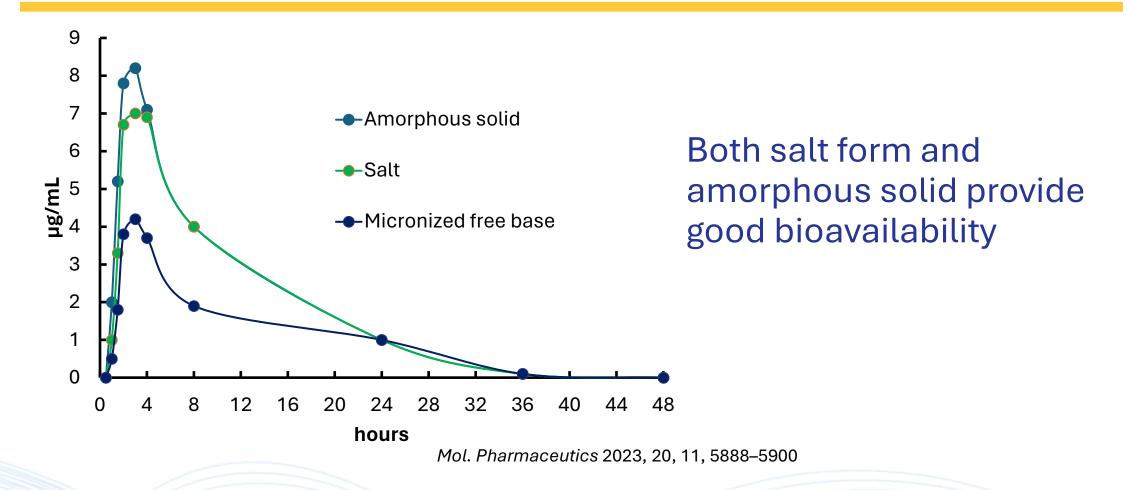
- When API solubility is lower in fatty acid: API precipitates as amorphous solid providing higher kinetic solubility
- When API solubility is higher in fatty acid: fatty acid selfassembles to form micelles, which solubilize and disperse API (similar to SEDDS)

Lipid digestion by lipases

Technolo

Increasing API Dissolution Rate: Dissolved Drug Formulations

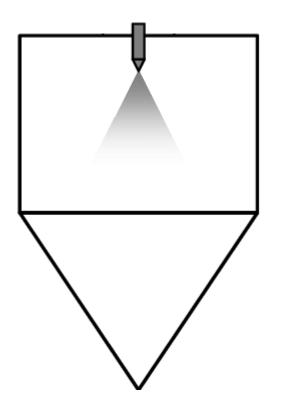
Туре	Description Weight % Inactive			Dispersion		
		Tri- or Mixed Mono- + Di- glycerides	Hydrophobic Surfactant (HLB < 12)	Hydrophilic Surfactant (HLB > 12)	Hydrophilic Cosolvent	Diameter (nm)
I	Lipid	100	-	-	-	-
II	SEDDS	40-80	20-60	-	-	250-2000
IIIA	SEDDS	40-80	-	20-40	0-40	100-250
IIIB	SMEDDS	< 20	-	20-50	20-50	< 100
IV	Oil-free	0	0-20	30-80	0-50	< 100


 $HLB = 20 \frac{mass \ of \ hydrophilic \ part}{20}$ molecular mass

Holm, et al. Eur J Pharm Sci. 2023, 189, 106556

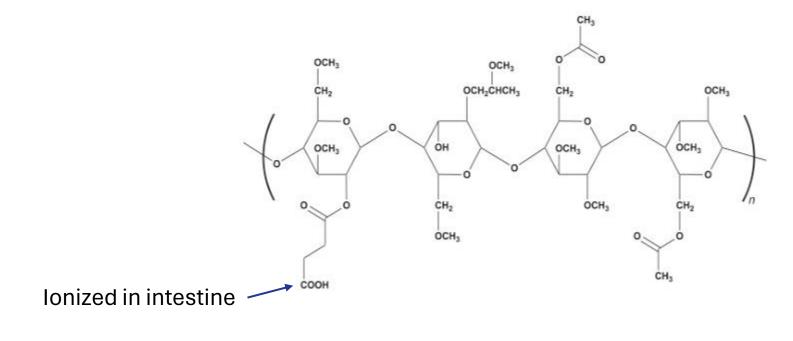
Amorphous Solid Dispersions (ASDs) Basics

- Amorphous solid APIs have greater kinetic solubility usually sufficiently long to enable absorption
- Polymer plus API form a molecular dispersion slows crystallization both during shelf life and once exposed to water in GI tract
- Solubility enhancement 2-200 fold!
- Two predominant methods for forming ASDs
 - Hot melt extrusion
 - Spray-drying


Supersaturation Impact on Absorption FreeThink Technologies

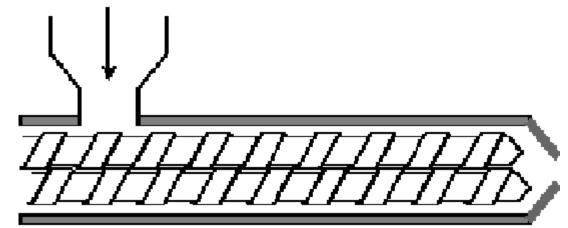
Amorphous Solid Dispersions: Spray-Dried Dispersions (SDDs)

- API and polymer need to dissolve in a volatile solvent (need to handle solvent vapor)
- Amorphous form locked in with rapid drying of droplets during spray-drying: need optimization at each scale
- Stability related to T_g and drug:polymer ratio
 - Want T_g at least 20°Č above storage conditions
 - 25:75 drug:polymer ratio is often stable, but concerns with dose level and SDD loading in dosage form
 - ASAP approach works for crystallization rate determination (fast stability data)!



Spray-Dried Dispersions (SDDs): Polymer Selection

Polymer generally has both hydrophilic and hydrophobic groups


Hydroxypropylmethylcellulose Acetate Succinate (HPMCAS)

Amorphous Solid Dispersions: Hot Melt Extrusions (HME)

- Polymer needs to melt and dissolve API to form a solution
 - API needs to be stable at melt conditions
 - Can add plasticizers to lower extrusion temperature
- Cooling locks in amorphous form
- Continuous process using twin screw extruder
 - No solvents
 - Can scale-up easily
- Common pharma polymers
 - PVP/VA, PVA, PEG, PVP

- MAD calculations useful to determine likelihood of needing solubilization based on preclinical data
- Low solubility results from high lattice energy (strong API-API molecular interactions) and/or hydrophobicity (weak H₂O-API interactions)
- Absorption can be limited by dissolution rate or API concentration in solution
- Increase API dissolution rate by salt formation, complexation, particle size reduction, or with oil/surfactant formulations
- Increase dissolved API concentration by use of amorphous solids, including *in vivo* precipitation and amorphous solid (dispersion)

Questions?

Copyright 2024 FreeThink Technologies, Inc.