Formulating for Stability

April 9, 2024

Maria Krisch

Copyright 2024 FreeThink Technologies, Inc.

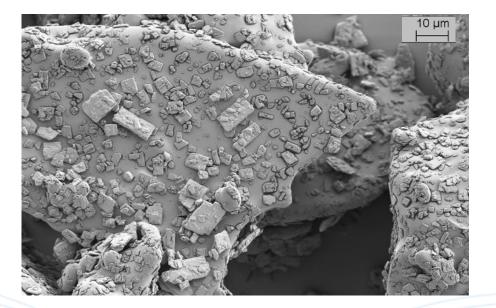
 Advantages of using a tiered formulation approach with ASAPprime[®] for rapid, material sparing drug product development

- Advantages of using a tiered formulation approach with ASAPprime[®] for rapid, material sparing drug product development
- How to avoid common pitfalls associated with binary excipient compatibility studies

- Advantages of using a tiered formulation approach with ASAPprime[®] for rapid, material sparing drug product development
- How to avoid common pitfalls associated with binary excipient compatibility studies
- Practical considerations for designing and executing a tiered formulation screen

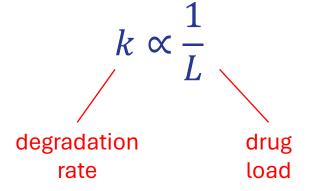
- Advantages of using a tiered formulation approach with ASAPprime[®] for rapid, material sparing drug product development
- How to avoid common pitfalls associated with binary excipient compatibility studies
- Practical considerations for designing and executing a tiered formulation screen
- How to assess and handle oxidation

How Excipients Impact Stability: Direct Impact



- Drug substance is typically more stable than drug product
- Degradation can result from direct drug-excipient reactions
 - Relatively uncommon
 - Example: Maillard reaction between secondary amines + reducing carbohydrates (e.g. lactose)
- Degradation can result from reaction of drugs with excipient impurities
 - Peroxides
 - Formaldehyde
 - Acids (e.g. formic acid, acetic acid)
 - Nitrites

How Excipients Impact Stability: Indirect Impact


- Mobility of API increases with loss of crystallinity at drug-excipient interface
- Degradation rates increase significantly with increased mobility

Reaction Rate Dependence on Drug Load

• There is a common relationship between drug load and stability*:

• Several models assume that degradation is accelerated by contact between drug particles and excipient particles

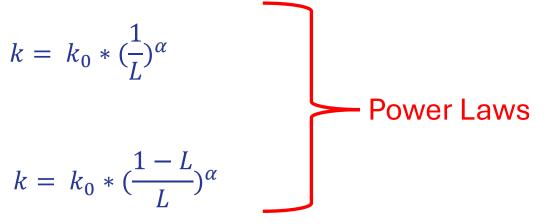
Lower drug load \rightarrow more API–excipient interactions \rightarrow faster degradation \rightarrow less stable

*Dimerization reactions can be an exception to this relationship

Three Models for Drug-Load Reaction Rate Dependence

1. Waterman et al.¹

$$\ln(k) = \alpha * \ln\left(\frac{1}{L}\right) + \ln(k_0)$$


2. Deepika and Dewan²

 $\ln(k) = \alpha * \ln\left(\frac{1-L}{L}\right) + \ln(k_0)$

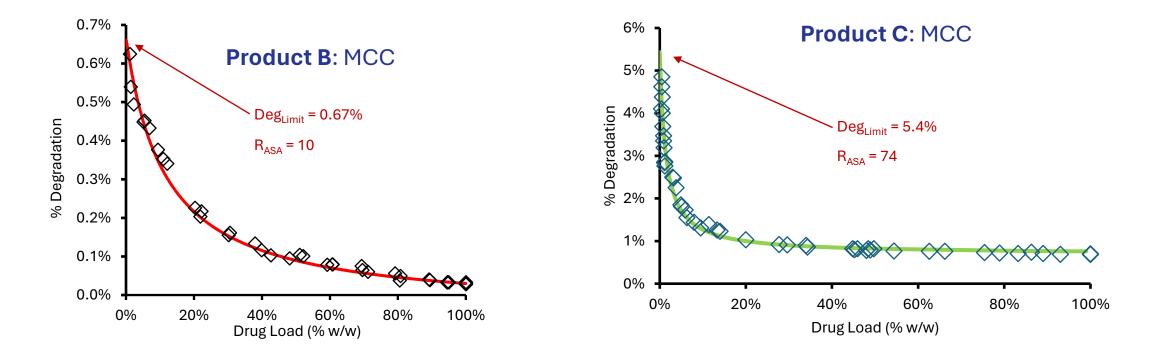
3. Surface Area Contact Model³

$$\frac{1}{k} = \frac{R_{SSA}}{k_{limit}} * \frac{L}{1-L} + \frac{1}{k_{limit}}$$

¹Waterman, K. C. *et al, J. Pharm. Sci,* **101 (11)**, pp. 4170-4177 (2012) ²Deepika and Dewan, S.K., *Int. J. Pharm. Sci. Heath Care*, **4 (4)**, pp. 109-117 (2014) ³Baertschi, S.W. *et al, J. Pharm Sci*, **108**, pp. 1746-1755 (2019)

$$k = k_{limit} * \frac{1 - L}{R_{SSA} * L + (1 - L)}$$

Copyright 2024 FreeThink Technologies, Inc.


Drug Load Dependence

- In all models, there is a non-linear dependence of stability on drug load
- This dependence is ultimately based on surface contact between the API and the excipients, but does not depend on reaction between API and excipients

Examples of Drug-Load Dependence

Images from 2022 SOS Conference Presentation by Garry Scrivens

Binary Excipient Compatibility

- A drug is mixed with potential excipients
- Each binary combination is stressed and tested (usually for degradant growth)
- Results from all binary mixtures used to inform full formulation

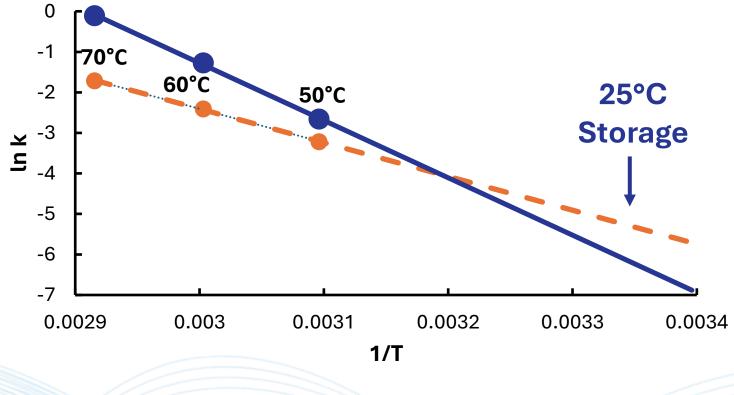
Binary Excipient Compatibility

- Drug:excipient ratio
 - 1:1 ratio most common
 - What is a representative ratio? If API is at 1% and excipient 5%, could use 1:5 or 95:5
- Interactions with low level excipients often exaggerated
 - 1:1 API:magnesium stearate binary studies have led companies to avoid this lubricant, but often no issue if used in the full formulation at ≤1%
- Since excipient effects are non-linear, binary impact is not directly additive

Rank Order Screening from Single Condition

- Rank order testing from a single condition: often used with binary compatibility or with full formulations
- Example: Two formulations stressed at 70°C/75% RH/2 weeks

Formulation	% Degradant after stressing	
Α	0.18	
В	0.90	

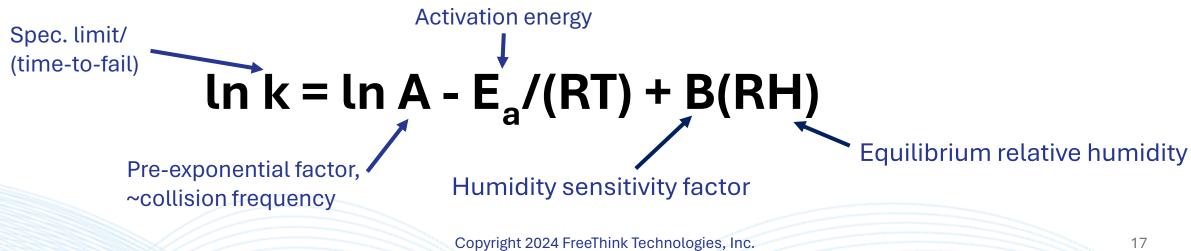

• Which formulation do you proceed with for 25°C/60% RH storage?

Rank Order Screening from Single Condition

15

While B is less stable at 70°C, it has a greater slope with temperature (larger E_a), making it more stable than A at 25°C

Rank order at high temperature is often the reverse of rank order at room temperature!

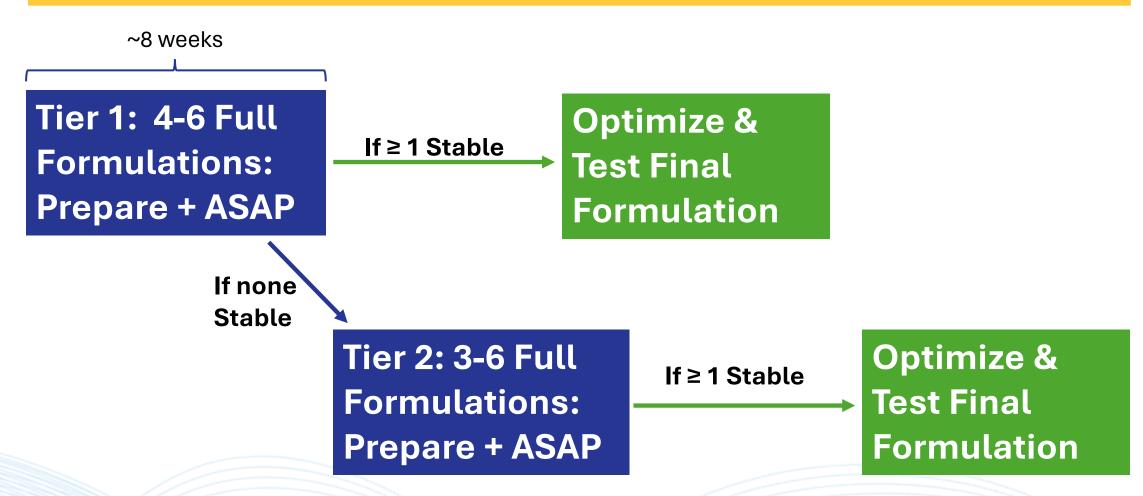

Beyond Rank Order: ASAP

- Need to understand formulation behavior at the storage condition, not the accelerated condition
- To relate the storage condition to accelerated conditions: measure slope with temperature (and %RH)
- Employ ASAP: Accelerated Assessment Stability Program
 - ASAPprime[®]: software program to model ASAP data

Beyond Rank Order: ASAP

- Stress formulations at several T/open %RH conditions and measure the amount of degradation over time
- Calculate time-to-fail at multiple T/% RH conditions
- Fit data to moisture-modified Arrhenius equation. Use model to predict time-to-fail at long term storage conditions

Use of ASAP with Tiered Formulation Screen



- Conduct ASAP stability study on full formulations (compacts, blends)
- Build a predictive model that gives product shelf life in representative packaging
 - Often model with low and high RH to mimic protective and nonprotective packaging
- Optimize and retest final formulation

Tiered Formulation Screen

Results of Tiered Formulation Screen

- Result: Acceptable or Unacceptable for targeted storage condition
 - Can evaluate several climate zones
 - Can evaluate different representative packaging options
- If multiple formulations acceptable, can choose formulation based on characteristics other than stability – see Target Product Profile (TPP)
 - Selection can be based on manufacturability or other considerations

Results of Tiered Formulation Screen: Next Steps

- Second tier formulations needed infrequently
 - Even with a second round, formulations can be developed in a short time
- Re-evaluate stability once final formulation is refined
 - Early API lots often vary in stability (usually improve over time)
 - Changes in excipient grade or processing methods may impact stability

Tiered Formulation Screen Design

- Control test of pure API gives baseline stability
- Potential characteristics to cover:
 - Wet and dry processing
 - Addition of acids or bases
- Choice of API drug load
 - If dose is set in TPP, use target drug load
 - If dose unknown, use lowest likely drug load
- Check specialized characteristics of concern for API (e.g. compression)

Example of Tier 1 Formulations (Immediate Release Tablet)

Function	Component	% Composition (mg)			
Function		Formulation 1	Formulation 2	Formulation 3	Formulation 4
Active	API	15	15	15	10
Ductile diluent	MCC	50	50	50	50
Brittle diluent	Lactose	25	25		
	Mannitol			25	25
Disintegrant	Croscarmellose sodium	5		5	
	Sodium starch glycolate		5		5
Binder	HPC	4		4	
	PVP		4		4
Lubricant	Magnesium stearate	1		1	
	Stearic acid		1		1

Example Formulation Screen Results

Formulation	% Probability of Passing after storage at:		
Formulation	25°C/35% RH/2 y	25°C/60% RH/2 y	
Formulation A (Base formulation)	97	95	
Formulation B (Alternate diluent)	88	86	
Formulation C (Alternate diluent)	90	87	
Formulation D (Acidic environment)	100	100	
Formulation E (Basic environment)	74	63	

Formulations A and D can both be advanced

ASAP Study Considerations

- For formulation screen, design smaller study for stability "bucketing"
- To test final formulation, design larger study for refined shelf life
- Shelf life-limiting degradant may vary by formulation

Advantages of a Tiered Formulation Approach

- Information beyond rank order
 - Get acceptable/unacceptable result for stability of all formulations
 - Possible outcomes: all acceptable or all unacceptable
- Material sparing approach
 - Under 1 g works for low dosage strength formulations
- Rapid approach
 - Tier 1 study length ~ 8 weeks

Handling Oxidative Degradation: Role Unknown

- Include sample comparison with +/- oxygen at same stress condition to look for effect
 - When degradation responds to oxygen level \rightarrow oxidative degradant
- Will indicate if shelf life-limiting degradants are oxidative

Handling Oxidative Degradation: Known Issue

- Include formulations with antioxidants in screen
- Use relatively high % of antioxidant to assess impact (e.g., 1%)
- Use antioxidants with different mechanisms of action⁴
 - Chain terminators
 - Sacrificial reductants
 - Chelators

⁴Waterman, K. C. *et al*, *Pharm. Dev. Tech*, **7** (1), pp. 1-32 (2002).

Options for Stabilizing Oxidative Degradation

- If antioxidants work, optimize level in formulation
- Minimize excipient impurities that cause oxidation (e.g. peroxides)
- Consider protonation of API (oxidations are hindered when the API already is positively charged)
- Consider oxygen-protective packaging
 - Low oxygen permeability packaging
 - Oxygen absorbers
 - Flushing with nitrogen

Summary: What Was Covered

- Advantages of using a tiered formulation approach with ASAPprime[®] for rapid, material sparing drug product development
- How to avoid common pitfalls associated with binary excipient compatibility studies
- Practical considerations for designing and executing a tiered formulation screen
- How to assess and handle oxidation

Questions?

Copyright 2024 FreeThink Technologies, Inc.